Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718847

RESUMO

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.

2.
Cell Cycle ; 22(19): 2097-2112, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974357

RESUMO

Gliomas are commonly known as primary brain tumors and associated with frequent recurrence and an unsatisfactory prognosis despite extensive research in the underlying molecular mechanisms. We aimed to examine the role of ANTXR1 in glioma tumorigenesis and explore its downstream regulatory mechanism. ANTXR1 expression in clinical specimens and its relationship with some pathological characteristics were detected using immunohistochemical staining. After silencing/upregulating ANTXR1 through lentiviral transfection in glioma cell lines, qRT-PCR and western blotting were used to examine mRNA and protein levels, and cell phenotype was also detected. ANTXR1-knockdown and -overexpression cells were then processed by AKT activator and PI3K inhibitor, respectively, to verify downstream PI3K/AKT pathway regulated by ANTXR1. Xenograft nude mice models were constructed to verify the role of ANTXR1 in vivo. We found overexpression of ANTXR1 in both cell lines in comparison with those in normal brain tissues. Glioma cell growth and migratory ability were dramatically impaired as a result of silencing ANTXR1 by shANTXR1 lentiviruses. ANTXR1 blockade also accelerated cell apoptosis and held back cell cycle via targeting G2 phrase during cell mitosis. In vivo xenograft models verified in vitro findings above. Further exploration disclosed that AKT activator promoted anti-tumor effects mediated by ANTXR1 knockdown, while PI3K inhibitor limited pro-tumor effects mediated by ANTXR1 overexpression, indicating that ANTXR1 functioned in glioma cells through regulating PI3K/AKT pathway. ANTXR1 could play an indispensable role in glioma tumorigenesis via activating PI3K/AKT-mediated cell growth. Our study provides a theoretical basis for targeting ANTXR1 as a molecular target in glioma clinical therapeutics.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Camundongos Nus , Glioma/patologia , Proliferação de Células/genética , Moléculas de Adesão Celular , Carcinogênese/genética , Linhagem Celular Tumoral , Apoptose/genética , Proteínas dos Microfilamentos/metabolismo , Receptores de Superfície Celular
3.
Neuroreport ; 34(5): 290-298, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36881751

RESUMO

OBJECTIVE: We previously demonstrated that spinal cord injury (SCI) induced hippocampus injury and depression in rodents. Ginsenoside Rg1 effectively prevents neurodegenerative disorders. Here, we investigated the effects of ginsenoside Rg1 on the hippocampus after SCI. METHODS: We used a rat compression SCI model. Western blotting and morphologic assays were used to investigate the protective effects of ginsenoside Rg1 in the hippocampus. RESULTS: Brain-derived neurotrophic factor/extracellular signal-regulated kinases (BDNF/ERK) signaling was altered in the hippocampus at 5 weeks after SCI. SCI attenuated neurogenesis and enhanced the expression of cleaved caspase-3 in the hippocampus; however, ginsenoside Rg1 attenuated cleaved caspase-3 expression and improved neurogenesis and BDNF/ERK signaling in the rat hippocampus. The results suggest that SCI affects BDNF/ERK signaling, and ginsenoside Rg1 can attenuate hippocampal damage after SCI. CONCLUSION: We speculate that the protective effects of ginsenoside Rg1 in hippocampal pathophysiology after SCI may involve BDNF/ERK signaling. Ginsenoside Rg1 shows promise as a therapeutic pharmaceutical product when seeking to counter SCI-induced hippocampal damage.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Traumatismos da Medula Espinal , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo , Caspase 3 , Traumatismos da Medula Espinal/tratamento farmacológico , Hipocampo , Apoptose , Neurogênese
4.
Pol J Pathol ; 74(2): 136-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36106424

RESUMO

AIM OF THE STUDY: Aim of the study is To investigate the effect of lentinan on proliferation and apoptosis of human astrocytoma U251 cells. Lentinan was dissolved in DMEM complete medium to form different concentrations (0, 25, 50, 100, 200, 400, 500, 600 µg/ml). CCK8 was used to detect the effect of lentinan with different concentrations on proliferation of human astrocytoma U251 cells, and the expression of Ki-67 was detected by immunofluorescence. In addition, the effect of different concentrations of lentinan on apoptosis of human astrocytoma U251 cells was detected by flow cytometry. Compared with the blank control group, 50 and 100 µg/ml lentinan significantly promoted proliferation of human astrocytoma U251 cells. When the concentration is more than 100 µg/ml, the cell activity gradually decreases, and the cell activity is the lowest when the concentration is 600 µg/ml. In addition, the low concentration lentinan (25, 50, and 100 µg/ml) had no significant effect on apoptosis of human astrocytoma U251 cells. However, lentinan above 200 µg/ml significantly promoted apoptosis of human astrocytoma U251 cells and had a concentration gradient effect, and the highest apoptosis rate was at 600 µg/ml. CONCLUSIONS: Lentinan can effectively inhibit proliferation and promote apoptosis of human astrocytoma U251 cells.


Assuntos
Astrocitoma , Lentinano , Humanos , Lentinano/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose
5.
Bioengineered ; 13(2): 4493-4516, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137671

RESUMO

Long noncoding RNAs (lncRNAs) have been regarded as modulators of neurodegenerative diseases. Here, we addressed the role of lncRNA miR-17-92a-1 cluster host gene (MIR17HG) in Parkinson's disease (PD). C57BL/6 mice and SH-SY5Y cells were intervened with 6-hydroxydopamine (6-OHDA) to set up PD models in vivo and in vitro. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was implemented to compare the expression of MIR17HG and miR-153-3p. Cell viability and apoptosis were estimated by 3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and Western blot (WB). The expression of alpha-synuclein (α-syn, SNCA) in BV2 was validated by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) and superoxide dismutase (SOD) activity were evaluated using commercially available kits. Bioinformatics analysis, the dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and qRT-PCR were conducted to demonstrate the interactions between miR-153-3p, MIR17HG, and alpha-synuclein (SNCA). MIR17HG was up-regulated while miR-153-3p was down-regulated in PD patients, mouse models and cells. Inhibiting MIR17HG attenuated neuronal apoptosis, microglial activation and SNCA expression in PD mice. Conditioned medium from 6-OHDA-treated SH-SY5Y cells intensified microglial inflammation, while inhibition of MIR17HG or overexpression of miR-153-3p restrained the inflammatory responses. MIR17HG's function was enforced by sponging miR-153-3p and releasing the attenuation of the putative targets of miR-153-3p and SNCA. Overall, MIR17HG, by targeting miR-153-3p and up-regulating SNCA, stimulates neuronal apoptosis and microglial inflammation in PD.


Assuntos
MicroRNAs/genética , Microglia/metabolismo , Doença de Parkinson , RNA Longo não Codificante/genética , alfa-Sinucleína/metabolismo , Animais , Feminino , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
6.
Neurosci Lett ; 764: 136245, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530115

RESUMO

OBJECTIVES: Glioblastoma (GBM) represents the commonest malignant glioma. Long non-coding RNA (lncRNA) FEZ family zinc finger 1 antisense RNA 1 (FEZF1-AS1) has been validated to play an oncogenic role in multiple human malignancies, while its function in GBM has not been largely reported. We aim to identify the regulatory mechanism of FEZF1-AS1 in GBM. MATERIALS & METHODS: The expression pattern of FEZF1-AS1 was firstly figured out in GBM cells using RT-qPCR. Then, functional assays were conducted to examine the influence FEZF1-AS1 had on the biological properties of GBM cells. The downstream targets of FEZF1-AS1 were predicted and the underlying regulatory mechanism was determined by mechanism assays. RESULTS: FEZF1-AS1 possessed high expression in GBM cells. Down-regulation of FEZF1-AS1 suppressed GBM cell proliferation, migration and invasion while inducing cell apoptosis. With the help of bioinformatics prediction and mechanism assays, FEZF1-AS1 was found to bind to miR-363-3p and NOB1 was determined to be the downstream gene. Finally, results of rescue assays verified that the suppressive function of FEZF1-AS1 inhibition on GBM development were restored by miR-363-3p depletion or overexpression of NOB1. CONCLUSION: FEZF1-AS1 had oncogenic function in the advancement of GBM by targeting miR-363-3p/NOB1, which made FEZF1-AS1 a potential biomarker for GBM treatment.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Regulação para Cima
7.
Ann Transl Med ; 9(12): 986, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277786

RESUMO

BACKGROUND: PYD and CARD domain-containing (PYCARD) was upregulated in TMZ-resistant cell lines and glioma tissue and was correlated with poor prognosis, its role in glioma is unclear known. The aim of this study was to elucidate the relationship between PYCARD and glioma based on Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Chinese Glioma Genome Atlas (CGGA) databases. METHODS: Glioma-resistant cells were compared with parental cells based on the GSE53014 and GSE113510 data sets. The relationship between PYCARD, tumor microenvironment, and long noncoding RNAs (lncRNAs) was assessed using logistic regression. Moreover, Kaplan-Meier and Cox regression were used to analyze the relationship between PYCARD expression and survival rate. Gene set enrichment analysis (GSEA) was also used to determine the biological function of PYCARD and lncRNAs. Cell viability and cell migration assays were used to evaluate the ability of cells to migrate and proliferate. Finally, we analyzed the expression patterns of PYCARD genes in a wide range of cancers. RESULTS: Elevated expression of PYCARD promoted glioma cell proliferation and migration. PYCARD expression was significantly positively associated with gamma delta T cells but negatively correlated with M2 macrophages in glioblastoma multiforme (GBM). Likewise, PYCARD expression was significantly positively associated with monocytes but negatively associated with activated mast cells in low grade glioma (LGG). We also found that 3 PYCARD-related lncRNAs in GBM and 4 PYCARD-related lncRNAs in LGG had a predictive value for glioma patients. The pan-cancer analysis showed that PYCARD expression was higher in most cancer groups. CONCLUSIONS: High expression of PYCARD is an independent predictor of unfavorable prognosis and chemotherapy resistance in glioma.

8.
Biomed Res Int ; 2021: 6568477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35005020

RESUMO

OBJECTIVE: To explore the predictive value of milk fat globule epidermal growth factor 8 (MFG-E8) in the occurrence of delayed cerebral ischemia (DCI) after an aneurysmal subarachnoid hemorrhage (aSAH). METHODS: We recruited 32 patients with aSAH as the case group and 24 patients with unruptured aneurysms as the control group. Serum MFG-E8 levels were measured by western blot and enzyme-linked immunosorbent assay. We analyzed the relationship between MFG-E8 levels and the risk of DCI. RESULTS: The levels of serum MFG-E8 in the case group (mean = 11160.9 pg/mL) were significantly higher than those in the control group (mean = 3081.0 pg/mL, p < 0.001). MFG-E8 levels highly correlated with the World Federation of Neurosurgical Societies (WFNS) and modified Fisher scores (r = -0.691 and - 0.767, respectively, p < 0.001). In addition, MFG-E8 levels in patients with DCI (5882.7 ± 3162.4 pg/mL) were notably higher than those in patients without DCI (15818.2 ± 3771.6 pg/mL, p < 0.001). A receiver operating characteristic curve showed that the occurrence of DCI could effectively be predicted by MFG-E8 (area under the curve = 0.976, 95%CI = 0.850-1.000). Kaplan-Meier survival analysis showed a remarkable decrease in the incidence of DCI in case group individuals with high levels of MFG-E8 (≥11160.9 pg/mL, p < 0.001). CONCLUSION: MFG-E8 may be a useful predictive marker for DCI after an aSAH and could be a promising surrogate end point.


Assuntos
Antígenos de Superfície/metabolismo , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Proteínas do Leite/metabolismo , Hemorragia Subaracnóidea/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC
9.
Neurochem Res ; 45(9): 2196-2203, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32770454

RESUMO

Glioblastoma (GBM) is an invasive cancer with poor prognosis in patients. Researching on molecular functions in GBM has attracted more and more attention. Actin gamma 1 (ACTG1) was reported as a pathogenic gene in skin cancer and colorectal cancer. Present study was designed to explore the biological role and underlying mechanism of ACTG1 in GBM cells. It was uncovered that ACTG1 presented high expression trends in GBM cells. Moreover, ACTG1 suppression hindered cell proliferation and boosted cell apoptosis in GBM. Then, according to the results of bioinformatics analysis and mechanism assays including RIP, RNA pull down and luciferase reporter assay, ACTG1 was verified to be targeted by miR-361-5p in GBM. Next, COX10-AS1 (COX10 antisense RNA 1) was identified as an endogenous sponge for miR-361-5p in GBM. Moreover, COX10-AS1 acted as a competing endogenous RNA (ceRNA) to positively regulate ACTG1 expression via sponging miR-361-5p. The following rescue assays demonstrated that COX10-AS1 promoted GBM cell proliferation and inhibited GBM cell apoptosis through ACTG1 up-regulation at a miR-361-5p dependent way. On the whole, present study uncovered a novel ceRNA pattern in which COX10-AS1 sponged miR-361-5p to elevate ACTG1 expression, therefore accelerating tumorigenesis in GBM. The findings suggested new promising targets for GBM treatment.


Assuntos
Alquil e Aril Transferases/genética , Apoptose/fisiologia , Proliferação de Células/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Glioblastoma/metabolismo , Proteínas de Membrana/genética , RNA Antissenso/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Humanos , MicroRNAs/metabolismo , Regulação para Cima/fisiologia
10.
Aging (Albany NY) ; 11(24): 12345-12360, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31895689

RESUMO

Glioma is one of the most common tumors in the brain and complete cure still a challenge. The present research aimed to investigate the molecular mechanism of circular RNA SMO (circSMO742) in glioma, via targeting miR-338-3p and regulating SMO expression. QRT-PCR was utilized to examine the expression profiles of circSMO742 and microRNA-338-3p (miR-338-3p) in glioma. SMO protein in glioma was tested via western blot. RNA pulldown assay and dual luciferase reporter assays were used to explore the targeting correlation between RNAs. MTT assay, transwell assays and flow cytometry were used to investigate cell proliferation, migration and invasion, and apoptosis, respectively. Tumor xenograft was done to ascertain the effect of circSMO742 knocking down on tumor growth. CircSMO742 and SMO were highly expressed in glioma tissues, while miR-338-3p expression was reduced. CircSMO742 together with SMO could promote cells proliferation, migration and invasion while inhibit cells apoptosis, whereas miR-338-3p showed negative impacts on the cell activity. Knocking down of circSMO742 suppressed glioma growing in vivo. CircSMO742 promoted glioma growth by sponging miR-338-3p to regulate SMO expression. Our research revealed a new molecular mechanism of glioma growth and provide a fresh perspective on circRNAs in glioma progression.


Assuntos
Glioma/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Receptor Smoothened/metabolismo , Animais , Linhagem Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Experimentais , Neurônios/metabolismo , RNA Circular/genética , Receptor Smoothened/genética , Transcriptoma
11.
World Neurosurg ; 112: 221-226, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408426

RESUMO

BACKGROUND: Although benign trigeminal schwannomas are uncommon, malignant peripheral nerve sheath tumors (MPNSTs) of the trigeminal nerve are extraordinarily rare. CASE DESCRIPTION: A 56-year-old female presented with a 2-month-long history of numbness of the right face and progressive weakness of the left limbs. Preoperative neuroimages indicated a giant tumor involving the middle and posterior cranial fossa with similar radiologic characteristics to benign trigeminal schwannomas. However, histopathologic and immunochemical examinations confirmed the tumor to be an MPNST. A nearly gross total resection was obtained with a combined frontotemporal extradural and subtemporal anterior petrosal approach. The postoperative course was uneventful, and the patient received adjuvant radiotherapy subsequently. There was no recurrence of the tumor with a 6-month-long follow-up. CONCLUSION: MPNSTs of the trigeminal nerve are exceedingly rare. This study described the 21st case of MPNSTs of the trigeminal nerve. MPNSTs of the trigeminal nerve showed similar radiologic characteristics to benign trigeminal schwannomas, and accurate diagnosis depended on pathologic and immunochemical examinations. Gross total resection followed by radiotherapy is the usual treatment.


Assuntos
Fossa Craniana Média/patologia , Fossa Craniana Posterior/patologia , Neoplasias dos Nervos Cranianos/patologia , Neurilemoma/patologia , Doenças do Nervo Trigêmeo/patologia , Nervo Trigêmeo/patologia , Fossa Craniana Média/diagnóstico por imagem , Fossa Craniana Posterior/diagnóstico por imagem , Neoplasias dos Nervos Cranianos/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neurilemoma/diagnóstico por imagem , Nervo Trigêmeo/diagnóstico por imagem , Doenças do Nervo Trigêmeo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...